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Exact solutions of the generalized Navier–Stokes equations
for benchmarking
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SUMMARY

The generalized Navier–Stokes equations for incompressible viscous �ows through isotropic granular
porous medium are studied. Some analytical classic solutions of the Navier–Stokes equations are gen-
eralized to the case of the considered equations. Obtained solutions of generalized equations reduce to
classic ones as porosity e�ect disappears. Average velocity of generalized solutions is calculated and
evaluated in two limiting regimes of �ow. In the shallow conduit, the generalized �ow rate approxi-
mates the free (without porous medium) �ow rate and in the case of removed boundaries this approaches
Darcy’s law. The use of the derived exact solutions for benchmarking purposes is described. Copyright
? 2002 John Wiley & Sons, Ltd.

KEY WORDS: porous medium; generalized Navier–Stokes equations; analytical solutions;
benchmarking problems

1. INTRODUCTION

Due to the non-linearity of the Navier–Stokes equations only a small number of exact solu-
tions have been found. The most recent reviews of analytical solutions of the Navier–Stokes
equations and its classi�cation were given by Wang [1; 2]. These solutions are important
because they represent some fundamental �uid �ows and serve for checking the accuracy of
approximate methods, in particularly, numerical schemes. There are three traditional methods
of verifying numerical schemes and solutions in computational �uid dynamics: the exact solu-
tions, experimental data sets and ‘exact, benchmarking’ high-resolution numerical simulations.
The importance of one of these modes increases when others are not accessible or have a
shortage of data. This is the case of hydrodynamic models in porous media. We consider
one model of laminar �ow through a granular porous medium which can be represented in
the form of the generalized Navier–Stokes equations. Therefore, it is useful to generalize
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1054 A. BOURCHTEIN

some known analytical solutions of the Navier–Stokes equations to the case of the consid-
ered model. We think this is in itself an interesting problem. Also these solutions can be
used to verify the validity of the di�erential model because in some simple cases they can be
compared with known experimental data of average characteristics of �ows and with empirical
laws such as Darcy’s law. Finally, these solutions can be used for benchmarking of numerical
schemes based on the considered or similar models.
The generalized Navier–Stokes equations applied to a description of incompressible viscous

laminar �ow through a rigid isotropic granular porous medium have been considered by
di�erent authors (for example, References [3–5]). We follow the paper by DuPlessis and
Masliyah [5]. The advantages of their model are its applicability to granular porous media over
the entire porosity range and its simple adaptability to numerical simulations. The primitive
equations have the following form:

�Vt + �(V · ∇)V
n
=−n∇p+ �∇2V − �FV − n�g; ∇ ·V=0 (1)

Here, the common denotations are used for �uid and porous medium characteristics: V is a
�uid velocity vector, p is a pressure; g is the gravitational force. The �uid is speci�ed by
de�nition of density � and dynamic viscosity �. The characteristics of porous medium are
porosity n and porosity function F . Porosity n is de�ned as a ratio of volume of the void
space to the bulk volume of a porous medium and it changes from zero to one (n∈(0; 1]).
Function F represents an additional drag force which describes in�uence of porous medium
on �ow. This function depends on porosity n only, it is continuous, decreasing and positive
on interval (0; 1], F becomes in�nite as n approaches zero and tends to 0 as n approaches 1.
Comparing this system with usual incompressible Navier–Stokes equations one can see that
the latter is the particular case of the model (1) when n=1. In the subsequent sections, we
will derive some particular solutions of Equation (1) assuming that dynamic viscosity � and
porosity n are constants.
Considering the primitive system in 4D domain [0; T ]× ��, where ��=� + @� is a 3D

spatial bounded domain with boundary �= @�, we have to specify the initial and boundary
conditions to de�ne the unique solution:

V=V0 on �� at t=0 (2)

(initial condition, V0 is the given function of spatial variables),

V=V� on �=@� for all t∈[0; T ] (3)

(no-slip boundary condition, V� is the given function of the time variable and two spatial
variables).
These conditions have to subject to some constraints such as initial divergence condition

∇ ·V0 = 0 on �

integral divergence condition ∫
�
V� · n d�=0 for all t∈[0; T ]

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:1053–1071



EXACT SOLUTIONS OF THE GENERALIZED NAVIER–STOKES 1055

and agreement condition between initial and boundary conditions V0 =V� on � at t=0 [6; 7].
We assume that the last constraints are satis�ed by appropriate choice of initial and boundary
conditions and then we will not mention these conditions anymore.

2. COUETTE–POISEUILLE FLOW

First, we will generalize the Couette–Poiseuille �ow between two parallel moving plates.
We use the classic approach and introduce an inertial Cartesian system with the z-axis
normal to the plates and the xy-plane lying midway between the plates so that the plates
are located at planes z=±h (see Figure 1 for problem geometry). Using the Couette–
Poiseuille simpli�cation V=V(z) and following the classic solution deriving method, one
can reduce the primitive system (1) with no-slip boundary conditions (3) to set of decoupled
equations

�uzz − �Fu=−nG= npx; �vzz − �Fv=−nH = npy; pz=−�g; wz=0 (4)

with boundary conditions

V(−h)=V1; V(h)=V2 (5)

Here, u; v; w are the velocity components, V=(u; v; w), V1 = (U1; V1; 0) and V2 = (U2; V2; 0) are
the velocity of the lower and upper plates, respectively, and G and H are the separation

Figure 1. Geometry for Couette–Poiseuille �ow.
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1056 A. BOURCHTEIN

constants. The solution of (4) and (5) has the following form:

u(z) =
1

sinh(2
√
Fh)

[U1 sinh(
√
F(h− z)) +U2 sinh(

√
F(h+ z))]

− n
G
�F

[
cosh(

√
Fz)

cosh(
√
Fh)

− 1
]

(6)

v(z) =
1

sinh(2
√
Fh)

[V1 sinh(
√
F(h− z)) + V2 sinh(

√
F(h+ z))]

− n
H
�F

[
cosh(

√
Fz)

cosh(
√
Fh)

− 1
]

(7)

w≡ 0; p=−�gz −Gx −Hy+ ’(t) (8)

where ’(t) is arbitrary time function.
In the case V1 =V2, the extreme values of velocity components are achieved at centerplane

z=0 and are given by formulas

uext =
U1

cosh(
√
Fh)

− n
G
�F

[
1

cosh(
√
Fh)

− 1
]

vext =
V1

cosh(
√
Fh)

− n
H
�F

[
1

cosh(
√
Fh)

− 1
]

If U1¡nG=�F , then, like in the classic case, the extreme value uext is the absolute maximum.
If U1¿nG=�F , then uext is the minimum value. Finally, if U1 = nG=�F , then u-component is
a constant function. The same is true for v-component with H substituted for G.
The important characteristic of the �ow is the average velocity. For example, in x direction

it can be evaluated for any height h as

Q=
1
2h

∫ h

−h
u dz=

U1 +U2
2
√
Fh

tanh(
√
Fh)− n

G
�F

[
1√
Fh
tanh(

√
Fh)− 1

]
(9)

Similarly to the classic solution the generalized one can be obtained when the plates are
inclined regarding vertical axis.
To compare these results with the classic ones, we present the horizontal velocity

components and �ow rate of the latter (the vertical component and pressure expressions are
the same)

uclas =
G
2�
(h2 − z2) +

U2 −U1
2h

z +
U2 +U1
2

; vclas =
H
2�
(h2 − z2) +

V2 − V1
2h

z +
V2 + V1
2
(10)

Qclas =
U1 +U2
2

+
G
�

h2

3
(11)
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EXACT SOLUTIONS OF THE GENERALIZED NAVIER–STOKES 1057

One can demonstrate that the generalized solution approaches classic Couette–Poiseuille �ow
as n approaches 1 (that is, when porous medium disappears):

lim
F→0

u= uclas; lim
F→0

v= vclas; lim
F→0

Q=Qclas

Let us consider two limit cases of the �ow rate (9) with respect to the parameter h:
the small height approximation (h�1) and the great height approximation (h�1). For small
values of

√
Fh the following representation is valid:

Q=
U1 +U2
2

+ n
(
G
�

− F
U1 +U2
2

)
h2

3
+O(F2h4)

This expression reduces to the classic formula (11) as n approaches 1 (that is, when the
porous medium disappears).
Also, direct calculation of limit as h approaches 0 in (9) and (11) yields

lim
h→0

Q= lim
h→0

Qclas =
U1 +U2
2

Therefore, when the in�uence of the boundaries (via no-slip boundary conditions) on the
�ow is strong or the porosity in�uence is negligible (

√
Fh�1) then the form of classic and

generalized solutions is similar.
In the opposite limit of great height approximation (h�1) we have a quite di�erent situation.

This is expected because in this case the �ow is de�ned primarily by porous medium and the
in�uence of far �eld boundaries is small (it can be neglected). The previous expression (11)
holds for the classic solution, but the limit form of the average velocity of the generalized
solution is

lim
h→∞

Q= n
G
�F

Comparing the two expressions, we conclude that the limit of classic average velocity is
in�nity (if G �=0) as the height h becomes in�nite, and, at the same time, the generalized
solution approaches a constant value de�ned by pressure and gravitational force gradients in
the �ow direction. The last formula represents one of the forms of the experimental Darcy’s
law. The expression for permeability coe�cient n=F was deduced analytically and calculated
in the di�erent regimes of �ow by DuPlessis and Maslyiah [5].
Figures 2(a) and 2(b) show velocity pro�les for di�erent parameters of the problem.

Figure 2(a) corresponds to the case of the equal boundary velocities and, consequently, the
curves are symmetric with respect to z=0 as it was indicated in previous analysis. For classic
solution and generalized solution with weak porosity in�uence (n=0:9; F=0:1) the condition
U1¡nG=�F is satis�ed and both pro�les have maximum value at z=0. Other generalized
solutions satisfy condition U1¿nG=�F and, in according with theoretical result, have min-
imum point at centerline. Figure 2(b) shows velocity pro�les for asymmetrical case when
boundary velocities are di�erent. As it was expected, velocity values decrease crucially with
increasing porosity terms in both cases. Presented curves for classic solutions can be compared
with corresponding �gures in well-known sources (for example, References [8; 9]).
The predicted behaviour of �ow rate with respect to the height h can be observed in

Figures 3(a) and 3(b), which present the �ow rates for classic solution and three generalized
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1058 A. BOURCHTEIN

Figure 2. (a) Couette–Poiseuille �ow: u-component pro�les as a function of vertical co-
ordinate z. Classic solution (solid curve) and three generalized solutions corresponding to
n=0:9, F=0:1 (dashed curve), n=0:3, F=10 (dot–dashed curve) and n=0:3, F=100
(dotted curve) are plotted. Fixed problem parameters: G=1, �=1, h=1, U1 = 1, U2 = 1.

(b) Same as in (a), except for G=−1, U1 = 0, U2 = 1.
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EXACT SOLUTIONS OF THE GENERALIZED NAVIER–STOKES 1059

Figure 3. (a) Couette–Poiseuille �ow: �ow rate Q as a function of height h. Classic solution (solid
curve) and three generalized solutions corresponding to n=0:9, F=0:1 (dashed curve), n=0:3, F=10
(dot–dashed curve) and n=0:3, F=100 (dotted curve) are plotted. Also Darcy’s �ow rates are shown
by separate point lines for indicated values of n and F . Fixed problem parameters: G=1, �=1, U1 = 1,

U2 = 1. (b). Same as in (a) except for |Q| and parameters G=−1, U1 = 0, U2 = 1.
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solutions considered in Figures 2(a) and 2(b). In the small height approximation, the �ow
rates through porous medium are similar to classic �ow and in the great height approximation
they approach Darcy’s law (separated point lines).
To use this solution for benchmarking purpose it is necessary to provide the respective

di�erential problem in a bounded domain. This problem can be composed of Equation (1) in
rectangular parallelepiped domain with boundary conditions (3) speci�ed as follows:

w� = 0; uz=−h=U1; uz=h=U2; vz=−h=V1; vz=h=V2

ux=−a = ux=a= uy=−b= uy=b= u(z); vx=−a= vx=a= vy=−b= vy=b= v(z)

3. HAGEN–POISEUILLE FLOW

Now, let us derive the generalized Hagen–Poiseuille �ow, i.e. fully established, axisymmetric
steady �ow of a viscous �uid through a straight round pipe of inside radius a located in a
gravitational �eld (see Figure 4 for problem geometry). Choosing cylindrical co-ordinates r; �; z
where axis z coincides with centreline of the pipe and assuming velocity components in the
form v=0; w=w(r), one can show that incompressibility equation together with homogeneous
boundary conditions (V� =0 in (3)) result in u≡ 0 and other primitive equations yield the
following decoupled equations

pr =0; p�=0; �
(
wrr +

1
r
wr − Fw

)
=−nG= npz + n�g

where G is the separation constant. Then pressure is found with precision up to arbitrary
constant B

p=−Gz − rgz + B

and axial velocity equation

wrr +
1
r
wr − Fw=−nG

�
(12)

can be transformed to a Bessel modi�ed equation of order 0

x2 xx + x x − x2 =0 (13)

by substitutions

x=
√
Fr;  =w − n

�F
G

The modi�ed Bessel functions I0(x) and K0(x) are linearly independent solutions of
Equation (13). Because K0(x) has a logarithmic singularity at the point x=0 then

 (x)=CI0(x)=C
∞∑
k=0

1
(k!)2

(x
2

)2k
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Figure 4. Geometry for Hagen–Poiseuille �ow.

where C is constant. Therefore, a physically meaning solution of (12) is given as follows:

w(r)=CI0(
√
Fr) + n

G
�F

=C
∞∑
k=0

Fk

(k!)2
( r
2

)2k
+ n

G
�F
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1062 A. BOURCHTEIN

and C is de�ned from the homogeneous no-slip boundary condition through the formula

C
∞∑
k=0

Fk

(k!)2
(a
2

)2k
=−n

G
�F

This solution can also be represented in the form

w(r)=−nG
�F

[
I0(

√
Fr)

I0(
√
Fa)

− 1
]

(14)

Applying the ratio test one can prove a uniform convergence of the obtained series in any
�nite interval [0; b]. Then the �ow rate

Q=
1

�a2

∫ 2�

0
d�
∫ a

0
wr dr=

2
a2

∫ a

0
wr dr=−2 nG

�F

[
1

a2I0(
√
Fa)

∫ a

0
I0(

√
Fr)r dr − 1

2

]
(15)

can be calculated by integrating term by term the series in (14), leading to the following
result:

Q=−2nG
�F

[
1

I0(
√
Fa)

∞∑
k=0

Fk

(k!)2(2k + 2)

(a
2

)2k
− 1
2

]
(16)

For subsequent comparison, we present some elements of the classic solution:

wclas =
G
4�
(a2 − r2); Qclas =

Ga2

8�
=

wclas max
2

(17)

The results analogous to the Couette–Poiseuille �ow approximations have been obtained for
small and great radius approximations. In the case of

√
Fa�1, retaining the �rst two terms

of the series in (14), we obtain the following approximation of the fourth order accuracy:

w(r)= n
G

�(4 + Fa2)
(a2 − r2) +O(F2a4)

When n=1 this approximation coincides with classic solution.
As in the classic case, the maximum velocity is achieved at centreline r=0 and has an

expression

wmax =w(0)=−nG
�F

[
1

I0(
√
Fa)

− 1
]
= n

Ga2

�(4 + Fa2)
+O(F2a4)

Relation (17) between �ow rate and maximum velocity is not satis�ed for generalized
solution, but in small radius approximation it holds approximately:

Q= n
Ga2

2�(4 + Fa2)
+O(F2a4)=

wmax
2

+O(F2a4) (18)
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Comparing (18) with (17) one can observe that they have an equivalent form. The factor
n has no qualitative in�uence and the term Fa2 is su�ciently small in the small radius
approximation. Therefore, when the in�uence of boundaries is strong or porosity is small then
the form of classic and generalized solutions is similar.
When a�1, i.e., boundaries have no practical in�uence on the �ow rate, the behaviour of

classic and generalized �ows are quite di�erent. It is di�cult to prove a uniform convergence
of the obtained series on the in�nite interval [0;+∞) which is necessary for direct calculus
of great radius limit in (16). Then, we use another method to evaluate the lima→∞ Q(a). Let
us denote

f(r)= I0(
√
Fr)=

∞∑
k=0

Fk

(k!)2
( r
2

)2k
(19)

for brevity. It is evident, that partial sums of this series

sn(r)=
n∑

k=0

Fk

(k!)2
( r
2

)2k
form the positive increasing sequence for any value of r. Then sn(r)¡f(r) for any n∈N and
limr→∞ f(r)=∞ because limr→∞ sn(r)=∞ for any n �xed. Therefore,

lim
a→∞

∫ a

0
f(r)r dr=∞

Now, considering the

lim
a→∞

∫ a
0 f(r)r dr
a2f(a)

one can conclude that it represents an indeterminate form of type ∞=∞. Since both numerator
and denominator are continuously di�erential functions then the L’Hospital’s rule can be
applied:

lim
a→∞

∫ a
0 f(r)r dr
a2f(a)

= lim
a→∞

af (a)
2af(a) + a2f′(a)

=
1

2 + lima→∞(af
′(a)=f(a))

(20)

To calculate the limit in the right-hand side of (20) we observe that lima→∞ f(a)=∞ and
the derived series

1
a

∞∑
k=1

Fk · 2k
(k!)222k

a2k ; F
∞∑
k=0

Fk

(k!)222k
a2k

converge uniformly in any �nite interval. Then derivation term by term is allowed giving

g(a) = af ′(a)=
∞∑
k=1

Fk2k
(k!)222k

a2k ; lim
a→∞ g(a)=∞

g′(a) = aF
∞∑
k=1

Fk−1

((k − 1)!)222(k−1) a
2(k−1) = aF

∞∑
k=0

Fk

(k!)222k
a2k = aFf (a); lim

a→∞ g′(a)=∞
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Therefore, the limit in the right-hand side of (20) is again an indeterminate form of type
∞=∞ and we can use the L’Hospital’s rule twice to calculate this limit:

lim
a→∞

af ′(a)
f(a)

= lim
a→∞

g′(a)
f′(a)

= lim
a→∞

aFf (a)
f′(a)

= lim
a→∞

a2Ff (a)
g(a)

=F lim
a→∞

2af (a) + a2f′(a)
g′(a)

= lim
a→∞

2af (a) + a2f′(a)
af(a)

=2 + lim
a→∞

af ′(a)
f(a)

This is possible only when

lim
a→∞

af ′(a)
f(a)

=∞

Consequently, the limit in left-hand side of (20) is equal to 0. Therefore,

lim
a→∞ Q(a)= lim

a→∞ 2
nG
�F

[
− 1
a2f(a)

∫ a

0
rf (r) dr +

1
2

]
=
nG
�F

This signi�es that the �ow rate through the porous medium approaches Darcy’s law when the
boundaries are removed.
Obtained results are illustrated in Figures 5 and 6. Numerical calculations represented

by plotted curves con�rm the asymptotic behaviour of derived solutions for clear �uid and
Darcy’s porous �ows.
To apply the obtained solution to a numerical simulation we derive the following rough

estimate of series (19) remainder:

|Rn|6 1
(n+ 1)!

exp
Fr2

4

Boundary conditions for benchmarking problem in a cylindrical domain can be formulated in
the form:

u� =0; v� =0; wr=a=0; wz=−c=wz=c=w(r)

4. STEADY UNIDIRECTIONAL FLOW THROUGH A RECTANGULAR CONDUIT

Let us consider a steady �ow through a rectangular conduit in the direction of increasing x.
To vary a physical model, we introduce the conduit inclined regarding gravitational axis (see
Figure 7 for problem geometry). Using the problem simpli�cations v≡ 0, w≡ 0, ut =0 one
can reduce Equations (1) to two separate equations

�(uyy + uzz − Fu)=−nG= npx + n�g sin �

Here � is the angle of inclination between x axis and the horizontal plane and G is the
separation constant.
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Figure 5. Hagen–Poiseuille �ow: w-component pro�les as a function of radial coordinate
r. Classic solution (solid curve) and three generalized solutions corresponding to n=0:9,
F=0:1 (dashed curve), n=0:3, F=10 (dot–dashed curve) and n=0:3, F=100 (dotted curve)

are plotted. Fixed problem parameters: G=1, �=1, a=1.

Solution of Helmholtz equation

�(uyy + uzz − Fu)=−nG (21)

subject to homogeneous boundary conditions

u(−b; z)= u(b; z)=0; u(y;−c)= u(y; c)=0 (22)

can be found as sum of two functions

u=’+  

Here,

’(z)=−n
G
�F

(
cosh

√
Fz

cosh
√
Fc

− 1
)

(23)

satis�es Equation (21) and homogeneous conditions with respect to variable z and  is the
solution of the homogeneous equation

 yy +  zz − F =0
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Figure 6. Hagen–Poiseuille �ow: �ow rate Q as a function of radius a. Classic solution (solid curve)
and three generalized solutions corresponding to n=0:9, F=0:1 (dashed curve), n=0:3, F=10 (dot–
dashed curve) and n=0:3, F=100 (dotted curve) are plotted. Also Darcy’s �ow rates are shown by
separate point lines for indicated values of n and F . Fixed problem parameters: G=1, �=1, a=1.

subject to the following boundary conditions:

 (y;−c)=  (y; c)=0;  (−b; z)=  (b; z)=−’(z)

The last boundary value problem can be solved applying the method of separation of the
variables. The solution has a form of series

 (y; z)=−n
G
�

∞∑
k=1

Ak cosh
√

F + �ky cos
√

�kz

where coe�cients Ak are calculated by formulas

Ak cosh
√

F + �kb · c= 2
F + �k

1√
�k
sin
√

�kc;
√

�k =
2k − 1
2c

�

Since obtained series is alternating one, the Leibnitz criteria can be applied to establish its
uniform convergence.
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Figure 7. Geometry for rectangular conduit �ow.

Finally, solution of problems (21) and (22) is obtained in the form

u(y; z)=−n
G
�F

(
cosh

√
Fz

cosh
√
Fc

− 1
)
−n

G
�

∞∑
k=1

Ak cosh
√

F + �ky cos
√

�k z (24)

The expression for pressure is given by formula

p=(G − �g sin �)x − �g cos� · z + p0

where p0 is an arbitrary time function.
Some simple calculus demonstrate that this generalized solution approaches classic one

uclas(x; y) =
G
2�
(z2 − c2) +

G
�

∞∑
k=1

Bk cosh
√

�ky cos
√

�kz

Bk cosh
√

�kb · c= 1√
�3k
sin
√

�kc

as n approaches 1.
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Figure 8. Rectangular conduit �ow: pro�le of u-component as a function of vertical co-ordinate z along
centreline y=0. Classic solution (solid curve) and three generalized solutions corresponding to n=0:9,
F=0:1 (dashed curve), n=0:3, F=10 (dot–dashed curve) and n=0:3, F=100 (dotted curve) are

plotted. Fixed problem parameters: G=1, �=1, b=2, c=1.

Due to uniform convergence series (21) can be integrated term by term and an expression
for �ow rate can be obtained for any conduit sizes:

Q=
1
4bc

∫ c

−c
dz
∫ b

−b
u dy=−n

G
�F

[
1√
Fc
sinh

√
Fc

cosh
√
Fc

− 1
]

− n
�bc

+∞∑
k=1

Ak√
F + �k

1√
�k
sinh

√
F + �k b sin

√
�k c

Again the classic average velocity becomes in�nite and �ow rate through porous medium
approaches Darcy’s law when the boundaries are removed:

lim
b→∞
c→∞

Q(b; c)= n
G
�F

The obtained results are illustrated in Figures 8–10. Figure 8 shows velocity component
values along vertical line through geometric center of conduit and the Figures 9(a)–9(d)
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Figure 9. (a) Rectangular conduit �ow: u-component contours. Classic solution for �xed problem
parameters: G=1, �=1, b=2, c=1. (b) Same as in (a), except for generalized solution with
n=0:9, F=0:1. (c) Same as in (a), except for generalized solution with n=0:3, F=10. (d) Same

as in (a), except for generalized solution with n=0:3, F=100.

present some velocity contours for the same model problems. We use the same porosity
parameters as in Figures 2 and 5. Again one can observe the e�ect of porous viscosity on the
intensity of the �ow. This in�uence can be even greater for natural porous media when n is
varied from 0.3 for sand and gravel to 0.6 for some soils and values of F exceed 106 [10; 11].
The curve and contours for classic solution can be compared with corresponding �gures in
well-known sources (for example, References [8; 9]). Finally, in Figure 10, we show the �ow
rates corresponding to the velocity patterns presented in Figures (8), (9). Two asymptotic
regimes of generalized solutions are clearly expressed by plotted curves.
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Figure 10. Rectangular conduit �ow: �ow rate Q as a function of width b. Classic solution (solid curve)
and three generalized solutions corresponding to n=0:9, F=0:1 (dashed curve), n=0:3, F=10 (dot–
dashed curve) and n=0:3, F=100 (dotted curve) are plotted. Also Darcy’s �ow rates are shown by
separate point lines for indicated values of n and F . Fixed problem parameters: G=1, �=1, c= b=2.

To apply obtained solution to numerical simulation we have to formulate the di�erential
problem in limited domain and evaluate the partial sums of series. To evaluate the partial
sums we used Leibnitz criteria again and established required remainder estimate:

|Rn|6 c2

(n+ 0:5)3�3

The required benchmarking problem can be done in the form of Equation (1) in Cartesian
co-ordinates with the boundary conditions

v� =0; w� =0; uy=−b= uy=b= uz=−c= uz=c=0; ux=−a= ux=a= u(y; z)

We observe that in the case of moved z-boundaries with velocities (23) the solution
(24) reduces to the only term ’(z) and, consequently, takes the simplest form. Analogous
observation is valid for moved y-boundaries.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:1053–1071



EXACT SOLUTIONS OF THE GENERALIZED NAVIER–STOKES 1071

5. CONCLUSIONS

Some exact solutions of the generalized Navier–Stokes equations describing incompressible
�ows in a porous media are derived. The evaluation of small porosity and close bound-
aries regimes showed proximity of these solutions to classic ones. In the case of removed
boundaries, obtained solutions approximate �ows governing by Darcy’s law. Based on the
derived analytical solutions, the benchmarking problems in bounded domains are formulated.
The exact solutions are for standard planar and axisymmetric geometries and can be used to
benchmark various numerical schemes that use this equation set.
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